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RESULTS OF LOW POWER DEICER TESTS ON A
SWEPT INLET COMPONENT IN THE NASA
LEWIS ICING RESEARCH TUNNEL

Thomas H. Bond* and Jaiwon Shin*
National Aeronautics and Space Administration
Lewis Research Center, Cleveland Ohio

ABSTRA

Tests were conducted under a USAF/NASA
Low Power Deicer program on two expulsive
technologies to examine system performance on
hardware representative of a modern aircraft part.
The BF Goodrich Electro-Expulsive Deicing
System and Pneumatic Impulse Ice Protection
System were installed on a swept, compound
curve, engine inlet component with varying
leading edge radius, and tested through a range of
icing and system operating conditions in the
NASA Lewis Icing Research Tunnel. A
description of the experimental procedure and
results, including residual ice thickness, shed ice
particle size, and changes in system
energy/pressure characteristics are presented here.

SYMBOLS AND ABBREVIATIONS

EEDS Electro-Expulsive Deicing System

°C Centigrade

IRT Icing Research Tunnel

LeRC Lewis Research Center

LWC Liquid Water Content, g/m3

MVD  Median Volume Diameter, um

NTSC National Television Systems
Committee

PAL  Phase Alternation Line

PEEK Polyetheretherketone

PIIP  Pneumatic Impulse Ice Protection

PPS pictures per second

INTRODUCTION

The United Statcs Air Force (USAF)
Materiel Command”™ and NASA have sponsored a
joint program (o examine the capabilities of
advanced low power ice protection systems. The
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initial goal was to "freeze” the currently available
technologies and asscss their icing performance
characteristics. This is reported in Refs.1 and 2.
The tests also resulted in the development of new
test methods and data acquisition systems to
capture ice shedding events and quantify shed ice
particle size [3]. Upon completion of this phase
of the program, the USAF selected the BF
Goodrich Electro-Expulsive Deicing System
(EEDS) and the Pneumatic Impulse Ice
Protection (PIIP) system to further test on a
specific engine inlet application.

A component representative of an actual
aircraft inlet part was chosen to test the two
expulsive deicers under a range of operating
conditions. This provided a rigorous installation
and test environment that modelled an actual
application.

Unlike conventional anti-icing systems, de-
icing systems let ice accrete on the surface until
there is enough mass to expel. The two deicing
technologies mentioned above rely on very rapid
surface displacement, induced by a repulsive
force, to crack and debond the ice. Once expelled,
the shed ice particles are carried away from the
surface by the airflow. If an engine inlet or
upstrcam airframe component is to be protected
with these deicing systems, it must be designed
so that shed ice particles are small enough not to
damage the engine fan blades. The potential for
future use of these systems on inlet applications
will be determined in part by the size, shape, and
number of particles that the engine can safely
ingest,

This paper will discuss the experimental
procedure used to conduct the test and present
residual ice characteristics and shed ice particle
size data,

HNI A

The model was tested under a range of icing
and performance conditions to provide an array of
variables for a parametric study. Both glaze and



rime ice conditions were tested at a number of
different temperatures, Deicer cycling time was
varied, and operating pressure or capacitor bank
energy was changed. Deicer system performance
was measured by documenting residual ice
thickness, photographic records, high spced
imaging, and general notes on observational run
sheets. Shed ice information was captured during
each run on high speed vidcography and high
speed 16 mm motion pictures. The data from the
high speed videography was coupled to an image
processing sofiware package that resided on a
workstation platform. This allowed the transfer
of digitized visual information to a computer
where the shed ice particle distributions and sizes
were calculated through pixel identification and
scaling techniques.

HARDWARE AND SYSTEM
DESCRIPTION

Icing Research Tunnel

The NASA LeRC IRT is a closed-loop
refrigerated wind tunnel. A 3728 kW (5000 hp)
fan provides airspecds up to 134 m/scc (300
mph). The refrigeration heat cxchanger can
control the fotal temperaturc from - 1.1 to - 42

°C. The spray nozzles provide droplet sizes from

approximately 10 to 40 pm median volume
droplet diameters (MVD) with liquid watcr

contents (LWC) ranging from 0.2 to 3.0 g/m3.
The test section of the tunnel is 1.83 m (6 f1)
high and 2.74 m (9 f1) wide.

Ice Pr ion | m

The Pneumatic Impulse Ice Protection
system was designed and developed by BF
Goodrich [5] (Fig. 1). It uses pncumalic pressure
to generate the ice debonding process. The deicer
has a matrix of spanwisc tubcs imbedded in a
composite leading edge. The tubes lay flat in the
relaxed state. When the system is activated the
rapid pressurization creates a shock wave which
propagates longitudinally through the tube [6].
The tubes expand slightly with a resultant
distortion of the outer surface that debonds the
ice. The high acceleration of the skin due to the
extremely fast pressure pulse launches the
shattered ice particles into the airstrcam (Fig. 2).
Polyetherether ketone (PEEK) was chosen from
among many outer skin options for this test.

The BF Goodrich Electro-Expulsive Deicing
System uses elcctro-magnetic repulsion to
generate the forces necessary to shed ice. The
deicer has multiple conductors (copper braids)
cured in an elastomer nylon composite matrix
[4]. A layer of teflon separates the upper and

lower conductor sets (Fig. 3) that overlay each
other. The conductors are designed such that the
high amperage current pulse from a capacitor
bank energy supply discharges through the
ovcrlaying sets in an opposing fashion, resulting
in electro-magnetic ficlds that produce a repulsive
force between the two layers, The bottom
conductors arc constrained by the outer surface of
the airfoil, so the upper conductors move rapidly
outward. This shatters the accreted ice and cxpels
it outward. The elastomer matrix is the restoring
force that returns the assembly to the relaxed
position at the end of the deicing event.

Model Hardw.

The test article chosen for this work was a
swept, compound curve, engine inlet component
with a varying lcading edge radius (Fig. 4). The
inlet section was 1.22 m (48 in) long with a
sharp 90° upper corner and a leading edge radius
near the top of 6.35 mm (0.25 in). The section
also had a sweeping lower curve with a leading
cdge radius near the bottom of 19.0 mm (0.75
in). The inlet scction was centered vertically and
attached to a generic afterbody that was bolted in
the tunnel test section, Two large wooden plugs
were fashioned to blend the top and botiom
curves into the afterbody. They smoothed out
the airflow to minimize the flow disturbances
which might affect the ice accretions and the shed
ice particles being expelled outward and
downstrcam from the model.

The inlct scction was connected to the
afterbody with a hinged bracket that allowed
quick removal of the inlet scction. This was
necessary to accommodate the two different
deicers installed during the test. A swivel fixture
was the second hardware point that sccured the
inlet scction to the afterbody. This layout
provided the latitude to adjust the angle-of-attack
(AOQA) of the inlet section without altering the
centerline position of the afierbody. Once the
AOA was sct, the swivel platc was tightened to
prevent movement.

Imaging Equipment

Three high speed videography systems were
used. All were Kodak Ektapro 1000 Motion
Analyzers. They consist of an intensified
imager, controller, monitor, and the Ektapro
1000 Processor. The Kodak Ektapro 1000
Imager has a gated image intensifier assembly
that functions as an electronic shutter and light
amplifier. This incrcascs the imager's ability to
capture events in low light and reduces the
blurring of objects moving rapidly through the
field of view. The Intensified Imager Controller



sets the shutter and amplification functions, The
intensified imager sends the video output to the
Ektapro 1000 Processor where the image data is
transferred to a special casscite tape that accepts
magnetic media information at up to 1000 frames
per second full field of view. The Processor can
play back taped images, and set the
communication protocols to transfer the visual
information in video or digital format. Time,
frame rate, session number, and other pertinent
data are included in the transfer. The Ektapro
1000 Analyzer has a resolution of 240 columns
of pixels by 192 rows of pixels, and provides a
video output signal compatible with either
NTSC (North American) standard or PAL
(European) standard video recording signal
formats.

The high speed 16 mm film camera was an
NAC model E-10/EE. The camera was operated
at 3000 pictures per second (PPS) and had a 122
m (400 f¢) roll film magazine. This combination
yielded 5 seconds of imaging data. Two black
and white conventional video cameras were used
for safety monitoring of the test and additional
qualitative documentation. These data were
recorded on S-VHS tapes. A 35 mm camera was
used to record residual ice and other noteworthy
ice accretion characteristics. A Sony Mavica
5000 still video camera was set up to have a field
of view equivalent to the mid-span Ektapro
coverage area. This provided a format readily
adaptable to digitized image data to support the
qualification of residual ice coverage.

TEST METHODS
Test Conditions

The ice protection systems were tested at one
tunnel velocity over a range of temperatures and
icing cloud conditions as outlined in Table 1.
The conditions were chosen to cover both glaze
and rime ice points at the highest tunnel airspecd
obtainable with this model configuration. The
icing spray times were varied between 10 and 16
minutes depending on the deicer cycling time.
There were seven different cycling times: 15, 30,
60, 90, 120, 180, and 240 seconds. This
provided ample points within the range to do an
extensive examination of cycling time effects.
From previous experience [1,2,3], the three
primary cycling times targeted were 30, 60, and
90 seconds; the other times provided information
to extend and define cycling time effects in the
parametric study, and were not repeated as often,
Two operating pressurcs, 4482 and 5516 kPa
(650 and 800 psi), were used for the PIIP system,
and three capacitor bank energy settings that
resulted in peak electrical currents of 3300, 3550,
and 4160 amperes were used for the EEDS.

Surface pressure was measured using a
pressure belt to examine the angle-of-attack
envelope for the 103 m/s airspeed by adjusting
turntable angle. These data were used to provide
the best possible setup configuration to obtain a
pressure distribution similar to flight.

Test Procedure

A typical run was started by bringing the
IRT to the desired operating condition and setting
the spray bars for the appropriate LWC and
MVD. Once the tunnel speed and temperature
were stable, the video monitoring systems and
deicer cycling control systems were initiated as
the spray cloud was turned on. The deicer was
actuated at the selected firing interval throughout
the icing event, and one high speed imaging data
point was taken during the spray as the deicer
was fired. This yielded an image with a varied
amount of obscurity depending on the LWC
seuting. At the end of the spray, before the final
deicer firing, the tunnel was brought to idle and
pre-fire information was documented. A still
video pre-fire image of the ice was taken, As
shown in Fig. 5, the ice on the inlet section was
mcasured at seven locations using a modified dial
indicator gage (Fig. 6). This provided a range of
measurements for different leading edge radii,
compound curve geometrics at the top and
bottom, and pressure side (lower surface) ice.
Photographs were taken of the ice shapes, and
general notes characterizing the ice were recorded.
The frost was cleancd off the model aft of the
impingement limits to improve the background
contrast between the white shed ice particles and
the black paint on the model. The tunnel was
then brought up to speed and a second high speed
imaging data point was taken during the final
deicer firing. The tunnel was brought down to
idle again, and a set of post-fire residual ice
thickness measurements, photographs, and notes
were recorded. A final still video image of the
remaining ice was also acquired. The model was
then cleaned off and prepared for the next icing
test.

Visual Data Acquisition

Three Kodak Ektapro 1000 high speed video
systems were used to collect information on ice
shedding. Two were located in the IRT Control
Room (Fig. 7) to monitor portions of the lower
surface of the inlet section model. Image
resolution was set to define a particle as small as

3.2 mm? (0.005 inz) for post-test analysis
requirements. The resulting dimensions for the
ficlds of view were approximately 0.33 m (13 in)
high and 0.41 m (15 in) wide for each camera.
This small field of view is the result of severe



limitations imposed on the intensified imager
camera resolution capabilities because of the high
sampling rates, rapid shuttering, and low-light
amplification. An NAC 16 mm high speed film
camera was used as a backup system. Because of
the better resolution of silver halide film, the
field of view was substantially larger than the
Ektapro camera field of view for an equivalent
particle size requirement. All the high speed
imaging data that has been reduced to date has
been from the Ektapro systems. The sheer
volume of image information collected during an
ice shedding event, the fast processing capability,
and the near real time data viewing of the high
speed video system make it the primary tool for
monitoring the shed ice events. The post-test
processing routine for analyzing thc data
accommodates the digitized information format
already available in the processor unit for the
Ektapro high speed videography system. A
complete shedding sequence can be automatically
and quickly uploaded to the image processing

package.

The final Ektapro system provided an
overhead view of the lower surface arca. This
camera documented the ice that was expelled
outward from the inlet section surface to provide
information on how far the ice particles traveled
away from the surface as they moved
downstream. The data was used to apply a
scaling factor for depth of field correction of the
first two Ektapro Intensified Imager camera 2-D
images.

Still images of both pre- and post-fire were
taken to provide a visual record of the residual ice
left on the inlet section. The leading edge and
lower surface area just below mid-span were
recorded with still video shots. It is intended 10
use this data to quantify residual ice coverage
characteristics; however, the image processing
software routine for this work is not completed
yet. The 35 mm camera pictures and the standard
video camera S-VHS tapes supplicd a qualitative
record of the system performance.

icer Imagin

The imaging data for the shed ice events was
recorded once during the spray, and once at the
end of the run with the spray off. Each deicer
cycle for both systems had multiple zone firings
and the imaging equipment recorded every zone
discharge during the shed event. Figures 8 and 9
show the zone layout, the deicer firing sequence,
and the Ektapro fields of view for the PIIP and
EEDS, respectively. In both cases, the lower
curve arca was viewed for the Zone 1 firing and
the mid-span area for the Zone 2 discharge.

The EEDS had three separate zones
approximaetly 0.43 m (17 in ) long. Each zone
was fired once, and since the coverage arca
wrapped around the leading edge to the upper
surface, there was only a single shed event per
deicer firing cycle in the Ektapro camera fields of
view. The PIIP system setup substantially
complicated the task of capturing the full set of
shed ice data. There were two spanwisc zones
which split at the leading edge, and each zone
was fired 1/4 second apart, then refired 3 seconds
later. Thus, the camera fields of view recorded
shed ice four times for every deicer firing cycle.
The upper surface zone expelled ice off the
leading edge and somecwhat into the adjacent
coverage area every time it was fired, meaning ice
particles were carried past the lower surface field
of view. The lower surface zone was directly in
the ficld of view.

Image Pr in

A new test technique using image processing
has recently been developed to automate the
process of analyzing shed ice events [3]. The
package works on a UNIX based operaling
system on a Silicon Graphics Incorporated (SGI)
workstation. For this test, the program received
digitized images through an IEEE input port
(Fig. 10), stored the information as picture files,
and provided a number of image processing
choices to analyzc the data.

After up-loading the high speed imaging data
1o the SGI workstation, the image of the
shedding event is reviewed from the pre-shed
condition (Fig.11) throughout the ice shedding
event. Figure 12 is a typical image of ice being
expelled off the inlet section. The typical
number of images analyzed is 25 to 40 frames,
with each frame capturing 1 millisecond of the
ice shed event. When all the shed ice has left the
ficld-of-view, the last image is selected as a static
background image and it is subtracted from all
the frames for that particular ice shedding
session. This leaves only the actual ice shed off
the model as the event is replayed (Fig. 13). A
grey level (tonal contrast from white through
grey to black) within an ice particle is sclected as
a threshold value, then all the pixels with higher
grey levels than the threshold value become pure
white and the rest become pure black background
(Fig. 14). One or several frames of this shed ice
event can now have the ice particle size(s)
measured. To do this, each particle in the image
field has the number of pixels within its
boundary counted, then a scaling factor is applied
to convert these values to areas.

The program provides a tabular output of the
shed ice particle size distribution from the frames



selected, and can plot this out in particle count
versus the size distribution. This plot contains
all the ice particle sizes tabulated from each
processed image frame. This means an individual
ice shed particle will be counted as many times
as it appears in consecutive frames of the shed
event. By drawing an upper bound curve on the
plot along the outer perimeter of the shed ice
particle size distribution, the data now represents
a worst case condition for that run (Fig. 15). Ice
particles within a given frame can also be
selected individually and have an area value
calculated.

It should be noted that the lower right-hand
tail of the curve (Fig. 15, boxed in area) is not
always an accurate indication of the largest
particle sizes. There are two image processing
effects happening here that can provide
ambiguous results. First, this boxed area may
contain particles that are overlapped in the 2-D
image plane and are counted as one large particle.
Second, the number of frames examined usually
includes some near the very beginning of the ice
shed event where the large ice particles are not all
completely broken up into their steady state sizes
by the airloads. This also yields ice particles that
are too large. Both anomalies should be
considered during the data analysis; making
individual measurements for the largest particles
using the single particle measurement menu of
the image processing routine will help screen out
these potential errors and confirm the accuracy of
this region of the plot.

The shed ice data from both expulsive deicers
was catalogucd and reduced in a similar fashion.
The imaging frames that contained the shed ice
event were saved and then analyzed for the ice
particle size distribution and the largest particle
sizes. Each shed event was reviewed by scanning
through all the frames where the ice was expelled
off the inlet section surface and carried aft by the
airstream. At this time, the biggest 2 or 3 ice
particles were chosen from the frames where they
presented their largest frontal view. The area was
then calculated in the image processing package.
This scanning process also allowed the reviewer
to define the start and end frames of the image sct
for particle size distribution data. Sclecting the
end point is straightforward - when the ice
particles have left the field of view the shed event
is over. Choosing the beginning point is more
difficult; a compromise frame was picked where
the large particles appear to be broken into their
steady state size by the airloads, but the smaller
particles were not so far downstream that many
of them have left the camera field of view. Once
these two end points were defined the image
processing package identified and calculated the
size of each ice particle in every frame and arraycd
the data in a tabular format.

Ener M men

The energy secttings for the EEDS system
were monitored on a selected basis by capturing
the capacitor bank discharge traces for both
current and voltage on a Hewlett Packard HP
5450 1A Digital Storage Scope. The device was
equipped with a printer for hard copy output.
This provided amperage and voltage traces to
determine peak values and current rise time. The
operating pressure for the PIIP system was hand
recorded from a pressure gage located downstream
of the regulator but in front of the impulse valve.
The effects from the change in energy and
operating pressure values are examined in the
results section.

RESULT

Documentation for the icing encounter can
be divided into two broad categories. First, the
shed ice particle size is important when
examining conditions that are pertinent to engine
ice ingestion or mechanical damage on
downstream aircraft components. Second, the
distribution, texture, quantity, and thickness of
ice remaining on a surface have a direct relation
to acro-performance concems. However, during
these tests residual ice characterization was
limited to thickness measurements. The results
section will cover only mid-span measurements
of the residual ice thickness and selected shed ice
particle size results. The large volume of data for
both measurements across the span of the model
for different power and pressure settings, through
a range of cycling time, icing, and temperature
conditions, makes it unrcalistic to present the
full results of a parametric study for both deicers
in this paper.

Residual Ice Data

The residual ice thickness measurement
results for model mid-span are listed for the PIIP
system in Table 2, and the EEDS in Table 3.
Both pre- and post-fire data points are included to
provide the bounds for deicer ice removal
performance. During normal deicing operations,
the pre-fire condition represents the worst residual
ice characteristics the inlet section will
encounter, and the post-fire condition represents
the minimum thickness of residual ice on the
inlet surface. The values in Tables 2 and 3 for
cach condition at both the leading edge and lower
surface are the average of all the repeat runs (up
to three) at that point. For most test points, the
repeat values were very similar; however, there
were occasions when the ice thickness
measurements varied by as much as 50 to 60%.



These were usually at the low cycling times
where there tended to be more data scatter in
general; the measurements for cycling times of
60 seconds and above were more repeatable
(usually less than 20% variability). The plots in
Figs. 16 through 19 are of the residual ice
characteristics at the mid-span of the model. The
PIIP system measurements in these plots and
Tablc 2 for the Icading edge and lower surface
were taken at points 3 and 4, respectively, in
Fig. 5(b). The EEDS data for these figures and
Table 3 are based on ice thickness measurements
at the leading edge and lower surface taken at
points 2 and 3, respectively, in Fig. 5(a). The
lower input pressure for the PIIP system, and the
mid-power for the EEDS, were the baseline
configurations set by BF Goodrich, and the plots
in Fig. 16 through 19 used these settings.

Figures 16 and 17 show residual ice
thickness mcasurements for both systems at

-2.2° C, a warm glaze ice condition. The post-
fire data show that the PIIP system clecaned the
ice off the leading edge completely and the EEDS
performed equally well above the 30 second
cycling time. Both systems consistently left less
than 0.5 mm of ice on the lower surface for this
temperature.

Figures 18 and 19 arc of the measured ice

thickness for a rime condition at -20° C. At the
Ieading edge, the ice removal for both systems
was very similar. The deicers cleared the ice off
the mid-span of the inlet component for cycling
times of 60 scconds and above; for 15 and 30
seconds cycling times, ice remained on the
surface of the leading edge. The lower surface ice
removal performance for the rime condition
proved more challenging than the equivalent
glaze ice condition. The PIIP system did not
clear the ice off the surface until the 90 sccond
firing cycle, and the EEDS had residual ice
throughout the cycling interval range. However,
the thickness left in these cases was about 0.6
mm or less. This was deemed to be an
insignificant amount for this application, but
may not be for other configurations where even
very small amounts of surface roughness result
in a large acrodynamic penalty.

A more in-depth examination of the residual
ice results from this work and another
USAF/NASA test can be found in Ref, 7.

Shed Ice Data

Although imaging data of the shed ice event
were recorded twice during the spray, the imaging
records were usually analyzed from the data sct at
the end of the run where there was no spray cloud
obscurity. Most test conditions have two or

three repeat test points where data were recorded
and analyzed. This allowed the examination of
repeatability within a subset of conditions. For
this IRT entry, operating pressurefenergy (for
PIIP/EEDS), tcmperature, or cycling time were
varied independently while the other parameters
were held constant. Along with this, there were
two scparale viewing sights on the model to
categorize geometry effects. The particle
distribution effects discussed in this paper were
based on a choice of a sample set of the data from
the total matrix of variables.

ingle Ice Particle Size M remen

The single particle arca data for the deicers
can be found in Tables 4 and 5. Each one of the
values in the tables is the largest particle size
that was individually measured by the image
processing routine. The tables include both the
mid-span and lower curve views of the deicers as
shown in Figs. 8 and 9. In the examination of
these data to date, few consistent trends have been
found. In the PIIP system (Table 4), the mid-
span data for the warmest three temperatures does
show an increase in size with the longer cycling
times, but that trend is not evident for the lower
curve area. There is some agreement for the
EEDS (Table 5) with the above trend, but it is
not repeated for every temperature. There is a fair
amount of scatter in these single particle size
measuremcnts; however, these data can be used to
determine the largest ice particle relcased during a
shed event for this test configuration.

Ice Particle Size Distribution M remen

The repeatability of the data is the basis for
the confidence associated with the trends of the
paramcter study. A scries of plots were generated
to examine repeatablility; Fig. 20 is typical of
the repeatability for the mid-span location for
both systems with a 60 sccond firing cycle. The
repeatability of the higher cycling times was
equivalent to that shown; however, the 15 and 30
second cycling times and some of the inlet
scction lower curve plots had slightly poorer
repeatability.

The rest of the trends detailed here for the
shed ice distribution data will only deal with 30,
60, and 90 second cycling times. These values
werc the primary cycling intervals for the test and
highlighting their characteristics will keep the
results to a managcable data set. The plots are
also based on the lower pressure setting for PIIP,
and the mid-power energy sectting for EEDS
unless otherwise noted.



The temperature and LWC effects were
combined because the nature of this test did not
allow the expansion of the test matrix to change
one independent variable at a time. The LWC

varied from 0.70 down to 0.38 g/m3 for the

primary test temperatures of -2.2° 10 -20° C.
Although limited work was done at two different

LWC settings at -24° C, there were not enough
repeat runs 1o confirm any trend at even this one
temperature setting. Figure 21 indicates there is
no effect for these combined parameters on ice
particle distribution results. It is reasonable to
assume that the high accelerations initiated by
both these expulsive deicers to remove the ice are
so great that these temperature/LLWC settings are
unimportant.

The lower curve of the engine inlet
component has a large leading edge radius and a
wide sweeping concave curve on the inner surface
that provides a substantially different geometry
from the mid-span region. The difference in shed
ice particle distribution performance between the
two sites was just as noticeable. As shown in
Fig. 22, ice shed from the mid-span was larger
and farther out on the tail end of the curve than
that shed from the lower lip.

The changes in input settings for energy and
pressure for the two deicers had only a marginal
effect on the outer bound curve of the shed ice
distribution. Figure 23 for the EEDS is typical
of the results encountered for energy/pressure
setting differences.

Figure 24 reinforces the results found in
previous tests when altering the deicer cycling
time. The cycling times of 60 and 90 seconds
have curves that overlay each other or are very
close together, while the curve for the cycling
time of 30 seconds shows much smaller
particles. ' The performance of these deicer
systems is related to a threshold ice thickness.
As the cycling time increases there is thicker ice
on the deicer between firings. At some threshold
value between 30 and 60 second cycling times,
there is a definable break between ice particle size
distribution profiles. For the higher cycling
times, the distribution curves are quite similar,
but the largest ice particle sizes grow with
cycling time. This implies that there may be a
threshold ice thickness below which the ice
particles could be more easily broken up into
smaller sizes.

Although both deicers are expulsive
systems, they have different ice removal
characteristics based on the deicer discharge which
creates the dynamic mechanical properties that
break the ice-to-surface adhesion. In comparing
the ice particle size distribution data for the two

deicer systems, the PIIP system has smaller size
distribution curves than the EEDS. Figure 25
supports this observation and also includes an
equivalent difference in large end particle sizes
between the two systems. It should be noted that
the difference has been quantified only for this
specific inlet section configuration, and cannot be
generalized for all applications.

Table 6 summarizes the effects for both
deicers discussed for Figs. 21 through 25. The
outer bound shed ice curves for the ice particle
size distribution at the largest size end of the plot
showed some different characteristics than the
main body of the distribution curves. Table 7
lists these results separately for the same trends
as in Table 6. These data have to be viewed with
the qualifications discussed at the end of the
Image Processing section on page 4.

CONCLUDING REMARKS

This joint USAF/NASA program provided
the opportunity to characterize the performance of
two new low power impulse type deicers by
examining the ice expulsion process. An
extensive database including variations in energy
and operating pressure, and a range of cycling
times, temperatures, and icing conditions
provided the basis for a detailed parametric study
of both residual ice and shed ice information.
These tests, conducted on the complex,
compound geometry of an engine inlet
component, allowed the analysis of the shed ice
particle size distribution for support of engine fan
blade Foreign Object Damage considerations.

Although PIIP performance was slightly
better then EEDS for the data analyzed, neither
system had been optimized for the complex
geometry tested. The results shown on this
complex shape are very encouraging; however,
further work is needed to optimize the deicing
system operating and performance characteristics
for this type of geometry.
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Table 1
IRT Test Conditions
Airspeed | 0 Tiotal LWC MVD
m/s / mph °C /°F g/m3 pm
103 /230 -2.2/28.0 0.70 20
103 /230 -6.7 / 20.0 0.50 20
103 /230 -20.0 /4.0 0.38 20
103 /230 -239/-11.0 0.38 20
103 /230 -239/-110 1.00 20
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Table 6

Effect of Test Parameters on Shed Ice Particle Size Distribution

Parameters Effects on Particle Size Upper Bound "
Curve
Cycling Time yes
(30 sec<60 sec = 90 sec)
Temperature/ LWC no
Geometry yes
(lower lip<mid-span)
u Energy/Input Pressure marginal
Systemn Comparison PIIP<EEDS

Table 7

Effect of Test Parameters on Maximum Shed Ice Particle Size in Distribution

H Parameters Effects on Larger Particles of the
Distribution Curves
| Cycling Time no trend
Temperature/ LWC EEDS: no trend
PIIP: lower lip<mid-span
Geometry no trend I

Encrgy/Input Pressure
System Comparison

EEDS: high<mid<low
PIIP; mid<high
PIIP<EEDS

12



BFGoodrich Company

PNEUMATIC IMPULSE ICE PROTECTION
SYSTEM SCHEMATIC

TIMER/CONTROLLER)

2500 PSIG AIR
SUPPLY COMPRESSOR

BF Goodrich Pneumatic Impulse Ice Protection System
28 VOC Principte of Operation

Surface

Surface
reinforcement

Y~ Matrix
N
%

S 22 i < - Impulse tube
——————— ™
Composite
substructure
SPENT IMPULSE VENTED OVERBOARD
PIIP SYSTEM SCHEMATIC TO47- 54b30
Figure 1. BF Goodrich Pneumatic Impulse Ice Figure 2. BF Goodrich PIIP System in
Protection (PIIP) System Schematic Operation

BF Goodrich Electro- Expulsive Deicing System
Compound Curved Sur face Applications

De-lcer Construction

Elastomeric
/ outer skin

Conductor
Toop
\{ﬁ conductors
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Figure 3. BF Goodrich Electro-Expulsive ~ Figure 4. Engine Inlet Component With
Deicing System (EEDS) Schematic Generic Afterbody in NASA LeRC
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(a) BFG - EEDS , (o) BFG-PIP

Figurc 6. Lower Surface Ice Thickness Figure 7. High Speed Videography Cameras in
Measurement IRT Control Room
top view
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Figure 8. Deicer Zone and Imaging Equipment Layout for BFGoodrich PITP
14
ORIGINAL PAGE _
BLACK AND WHITE PHOTOGRAPH



Inlet Section each zone fires once
In a deicing cycle

zone 3
Firing Sequence
ar Ektapro zone zone zone
fiow zone 2 #2 view 1 2 3
zone 1 Etapro | Ektapro #1 - lo J ' J
#1 viow p wer curve 0 1.5 3.4
Ektapro #2 - mid span . )
seconds
———
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Figure 13. Image Processing Routine - After Figure 14. Image Processing Routine - After
Image Subtraction ' Grey Scale Threshold is Set
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Figure 15. Shed Ice Particle Distribution With Upper Bound Curve
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Figure 16. Measured Ice Thickness at the Leading
Edge at mid-span for -2.2 °C, 0.70 g/m3
LWC, 103 m/s airspeed. PIIP was at low
pressure setting, and EEDS was at mid-
power setting.
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Figure 17. Measured Ice Thickness at the Leading

Edge at mid-span for -20 °C, 0.38

g/m> LWC, 103 m/s airspeed. PITP
was at low pressure setting, and
EEDS was at mid-power setting.
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Figure 24. Shed Ice Size Distribution - Cycling
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